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Lecture 5 – Thursday October 27, 2016 

State Estimation-I 
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Objectives 

When you have finished this lecture you should be able to: 

• Recognize different imperfection aspects of data collected for 

situation awareness. 

• Recognize different sources of uncertainty in autonomous 

systems and understand the problem of state estimation. 

• Understand Bayesian probability as a commonly used and 

indispensable framework to handle quantitatively with 

uncertainty in autonomous systems. 

• Understand Bayes filter and its role in state estimation. 
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• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 

Outline 
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Situation awareness is: 

◊ the perception of environmental elements with respect to 

time and/or space,  

◊ the comprehension of their meaning, and  

◊ the projection of their status after some variable has 

changed, such as time, or some other variable, such as a 

predetermined event. [1] 

Uncertainty 
• Situation Awareness 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 6/22 6 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

Collect 

Relevant 

 Data 

P
r

o
v

e
n

a
n

c
e

 

Relate 

Situation 

Entities 

Semantic Analysis 

•thematic 

•Spatio-Temporal 

•trust 

Identify 

Situation 

Entities 

[2] 

Uncertainty 
• Situation Awareness 
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Uncertainty 

Sources of data 

Human-Space Sensor-Space Computer-Space 

• Situation Awareness 
Airport as Volume of Interest (VOI) 

Ad-hoc observers 

Physical sensors Archived documents  and social media 
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Data Imperfection  

Imprecision Uncertainty 

Uncertainty 

[3] 

Granularity 

Data is 

uncertain when 

the associated 

confidence 

degree, about 

what is stated 

by the data, is 

less than 1 

Imprecise data 

is that data 

which refers 

to several, 

rather than 

only one, 

object(s)  

Data granularity refers to 

the ability to distinguish 

among objects, which 

are described by data, 

being dependent on the 

provided set of attributes 
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Data Imperfection  

Imprecision Uncertainty 

• “I think there are 
two doors in front 
of me”. 

• The number is 
exact but we are 
not sure. 

• The associated 
confidence or 
belief degree<1. 

Vagueness  Ambiguity Incompleteness 

• “The door is wide.” 

• The assigned attribute 
“wide” is not well-
defined as it can be 
interpreted subjectively. 

• Door 
entrance is 
between 80 
and 120 cm. 

• “It is not possible to 
cross the door” 

• Some information 
missing. 

• “There are at least two doors in front of me”. 
• The number of doors could be two or more. 

Uncertainty 

[3] 

Granularity 

• Coarse-grained: E5 6006 

• Fine-grained: Building: E5, 
Floor: 6, Room: 006 
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Uncertainty 

[3] 
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• Autonomous systems  

are able to perceive the 

physical world and 

physically interact with it 

through computer-

controlled mechanical 

devices. 

Environment, state

World model

Autonomous System

Percepts

Diagnosis

Strategies

Solutions

Commands

Actions

belief

problem

schematic 

decision 

making

precise decision making

Goals

• A critical problem of 

autonomous systems is 

uncertainty, which results  

in wrong beliefs about its state 

and/or environment state. 

Uncertainty 
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• Example: A robot is driving in 

front of a door. 

• The robot is estimating the state 

of a door (open or closed) using 

its camera.  

• Assume the robot’s sensors are 

noisy.  

• If mistaking a closed door for an open one incurs costs (e.g., the 

robot crashes into a door). 

Uncertainty 

[4] 
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• Uncertainty or lack of certainty arises if the system lacks 

critical information for carrying out its task. 

• This critical information include, but is not limited to: 

◊ The robot pose. 

◊ The configuration of the robot’s actuators, such as the joints of 

robotic manipulators. 

◊ The robot velocity and the velocities of its joints. 

◊ The location and features of surrounding objects in the 

environment. 

◊ The location and velocities of moving objects and people. 

◊ Others, sensor status, battery status… 

Uncertainty 
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• In robotics for example, uncertainty arises from five different 

factors: 

1. Environments 

2. Sensors 

3. Robots 

4. Models 

5. Computation 

Uncertainty 
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• Environment: 

Physical worlds are inherently unpredictable. While the degree 

of uncertainty in well-structured environments such assembly 

lines is small, environments such as highways and private homes 

are highly dynamic and unpredictable. 

Well-structured Static Environment  Unstructured Dynamic Environments  

Uncertainty 
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• Sensors: 

Sensors are imperfect devices with errors. They are inherently 

limited in what they can perceive. 

Limitations arise from two primary factors: 

1.Range and resolution of a sensor is subject to 

physical laws. For example, cameras can’t see 

through walls, and even within the perceptual range 

the spatial resolution of camera images is limited.  

2. Sensors are subject to noise, which perturbs sensor 

measurements in unpredictable ways and hence limits the 

information that can be extracted from sensor measurements. 

Uncertainty 
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Sensor Errors 

Random Errors/  

Non-deterministic Errors 
Systematic Errors/ 
Deterministic Errors 

Random errors are characterized by a lack 

of repeatability in the output of the 

sensor. They cause by measurement 

noise. For example, they may be due to 

fluctuations in the capacity of the resistance 

of electrical circuits in the sensor, or due to 

the limited resolution of the sensor. 

Systematic errors are characterized by 

being consistent and repeatable. 

Such as Calibration Errors, Loading 

Errors (if the sensor is intrusive), 

Environmental Errors and Common 

Representation Format Errors. 

lead to sensor uncertainty 

• Sensors: 

Uncertainty 
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• Robots: 

Robot actuation involves motors that are, at least to some extent, 

unpredictable, due effects like control noise and wear-and-

tear. 

muRata Boy from muRata Manufacturing 

Some actuators, like low-cost 

mobile robots, can be 

extremely inaccurate. 

Others, such as heavy-duty 

industrial robot arms and 

research mobile robots, are 

quite accurate.  

Uncertainty 

A:/Egypt-2/GUC/Teaching/1-Winter10-11/Seminar/direct.avi


MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 19/22 19 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Models: 

Models are inherently inaccurate. Models are abstractions of 

the real world. As such, they only partially model the underlying 

physical processes of the robot and its environment.  

Model errors are a source of uncertainty that has largely 

been ignored in robotics, despite the fact that most robotic 

models used in state-of-the-art robotic systems are rather crude. 

Uncertainty 
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• Computation: 

Autonomous systems are real-time systems, which limits the 

amount of computation that can be carried out.  

Many state-of-the-art algorithms are approximate, achieving 

timely response through sacrificing accuracy. 

Uncertainty 
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State Estimation 

• State estimation addresses the problem of estimating 

quantities from sensor data that are not directly observable, 

but that can be inferred. 

• In most robotic applications, determining what to do is relatively 

easy if one only knew certain quantities. 

• For example, moving a mobile robot is 

relatively easy if the exact location of the 

robot and all nearby obstacles are known.  

• Unfortunately, these variables are not directly measurable.  

• Instead, a robot has to rely on its sensors to gather this 

information. 
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• Typical State variables: 

◊ The robot pose. 

◊ The configuration of the robot’s actuators, such as the joints of 

robotic manipulators. 

◊ The robot velocity and the velocities of its joints. 

◊ The location and features of surrounding objects in the 

environment. 

◊ The location and velocities of moving objects and people. 

◊ Others, sensor status, battery status… 

State Estimation 
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• Sensors carry only partial information about those 

quantities, and their measurements are corrupted by noise. 

• Error of a sensor is the difference between the sensor’s output 

measurements and the true values being measured, within some 

specific operating context.  

 Error=m-v 

where 

m is the measured value  

v is the true value. 

• From a statistical point of view, we wish to characterize the 

error of a sensor, not for one specific measurement but for any 

measurement. 

State Estimation 
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• Let us formulate the problem of sensing as an estimation 

problem.  

• The sensor has taken a set of n measurements with valuesi.  

• The goal is to characterize the estimate of the true value E[X] 

given these measurements: 

 ngXE  ,...,,][ 21

Estimate  of feature 

Feature 
. 
. 
. 

Uncertain measurements 

State 
Estimation 

1

2

n

State Estimation 
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• From this perspective, the true value is represented by a 

random (and therefore unknown) variable X.  

• State estimation seeks to recover state variables from the 

data. 

Estimate  of 
feature 

Feature 
. 
. 
. 

Uncertain measurements 

State 
Estimation 

1

][XE2

n  ngXE  ,...,,][ 21

State Estimation 
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Modeling 
Dimensions 

Partial Observability (PO) 

Uncertainty 

Time 

Decision 

Learning 

Multiagent 

The more dimensions you use, the less computational tractability 
you get 

State Estimation 
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Sensor 

z 

World state 

Sensor Reading 

Range surface 

Sensor Model 

p(z|r) 

◊ To interpret the range data obtained from a given sensing 

device, stochastic sensor model is used. This model is 

defined by a probability density function (pdf). 

◊ This pdf is of the form p(z|r) and relates reading/observation 

of measurement z with the true parameter range value r. 

State Estimation 

• Modeling Uncertainty 
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• Partial Observability 

A partially observable system is one in which the entire state of 

the system is not fully visible to an external sensor.  

In a partially observable system the observer may utilize a 

memory system in order to add information to the observer’s 

understanding to the system. 

State Estimation 

Fully 
observable 
cells 

Sensor reading 

z 

p[occupancy|reading z] 

Occupied 

Undefined 

Empty 
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• Partial Observability 

In chess (apart from the ‘who is 
moving next’ state) the full state 

of the system is observable at 
any point in time. 

Fully observable system 

In card game, some of the cards are discarded into a 
pile face down. In this case the observer is only able to 

view their own cards and potentially those of the dealer. 
They are not able to view the face-down (used) cards, 
and nor are they able to view the cards which will be 

dealt at some stage in the future. A memory system can 
be used to remember the previously dealt cards that are 

now on the used pile. This adds to the total sum of 
knowledge that the observer can use to make decisions. 

Partially observable system 

Source: http://en.wikipedia.org/wiki/Partially_observable 

State Estimation 
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State Estimation 

Technique Uncertainty Time Decision 
Partial 
Observability 

Learning Multiagent 

Bayes Filters     

Bayesian Networks (BN)   

Dynamic Bayesian 
Network (DBN) 

   

Hidden Markov Models 
(HMMs) 

    

Markov Decision Process 
(MDP) 

   

Reinforcement Learning 
(RL) 

    

Partial Observerable MDP 
(POMDP) 

    

Multiagent MDP     

Multiagent RL      

Partial Observerable RL 
(PO-RL) 

     

Stochastic Game (SG)      

Partial Observerable 
Multiagent RL 
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Outline 

• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 
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• Random Variables 

A random variable (RV) represents functional mapping from 

a set of experimental outcomes (the domain) to a set of real 

numbers (the range). 

Example-1: the roll of a die can be viewed as a RV 

if we map:  

Basic Concepts in Probability 

Appearance of Mapped to Output: 1 

Appearance of Mapped to Output: 2 

Appearance of Mapped to Output: 3 and so on… 

Experimental outcomes  A set of real number 
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• Random Variables 

Example-1 (cont’d): 

Of course, after we throw the die, the value of the die is no 

longer a RV –it becomes certain. 

The outcome of a particular experiment is not a RV. 

Basic Concepts in Probability 
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• Random Variables 

Example-1 (Cont’d): If we define X as a RV that represents the 

roll of a die, then the probability that X will be 4 is equal to 1/6. 

If we then roll a four, the four is a realization of the RV X. 

If we then roll the die again and get a three, the three is another 

realization of the RV X. However, the RV X exists 

independently of any of its realizations. 

This distinction between a RV and its realization is important for 

understanding the concept of probability. 

Realizations of a RV are not equal to the RV itself. 

Basic Concepts in Probability 
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• Random Variables 

Example-1 (Cont’d): When we say that 

The probability of X=4 is equal to 1/6, that means that there is a 

1 out of 6 chances that each realization of X will be equal to 4.  

 

 

 

 

However, the RV X will always be random and will never be 

equal a specific value. 

Basic Concepts in Probability 

6

1

outcomes possible ofnumber  Total

4)(Xevent  favoring outcomes Possible
)4( 


Xp
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• Random Variables 

Example-2: Another  standard example of a random variable is 

that of a coin flip, where X can take on the values head or tail. 

If the space of all values that X can take on is discrete, as is the 

case if X is the outcome of a coin flip, we write p(X=x) to denote 

the probability that the random variable X has value x. 

A fair coin is characterized by  

p(X = head) = p(X = tail) = 0.5. 

Discrete probabilities, sum to one, that is 

 

Basic Concepts in Probability 

 
x

xXp 1)(
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• Random Variables: is a stochastic variable that represents 

the formal encoding of one’s beliefs about the various 

potential values of a quantity that is not known with 

certainty. 

Basic Concepts in Probability 

Random Variables 

Discrete Continuous 

◊ # of detected landmarks. 

◊ A door state (open or closed) 

◊ Space state (occupied, empty or 

undefined) 

◊ Sensor state (on or off), etc… 

◊ Travelled distance by the robot. 

◊ The time taken to reach a goal. 

◊ Location and velocities of moving 

objects and people. 

◊ Battery level, etc… 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 39/22 39 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Probability Distribution Function 

The most fundamental property of a RV X is its probability 

distribution function (PDF) FX(x), defined as 

This probability distribution identifies either the probability of 

each value of a random variable (when the variable is discrete), 

or the probability of the value falling within a particular interval 

(when the variable is continuous). 

)()( xXpxFX 

)()()(

  if    )()(

1)(          0)(

]1,0[)(

aFbFbXaF

babFaF

FF

xF

XXX

XX

XX
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Basic Concepts in Probability 
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• Probability Density Function 

The probability density function (pdf) fX(x) is defined as the 

derivative of the PDF: 

This density function is used to characterize the statistical 

properties of the value (or the realization) of X. 

dx

xdF
xf X

X
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The area under the curve is 1, indicating the 
complete chance of  X having some value. 

Basic Concepts in Probability 

a b 
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• Probability Density Function 

The probability density function is a useful way to characterize 

the possible values of X because it not only captures the range of 

X but also the comparative probability of different values for X. 

Using pdf we can quantitatively define the mean, variance, 

and standard deviation as follows: 

Mean Value : is equivalent to the 

expected value if we were to measure an 

infinite number of times and average all 

of the resulting values. 

dxxxfXE X



 )(][  represents the weighted average of all 

possible values of X. 

Basic Concepts in Probability 
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• Probability Density Function 

Mean Value  (cont’d):  

Example: For a discrete case, when a die is thrown, each of the 

possible faces 1, 2, 3, 4, 5, 6 (the xi’s) has a probability of 1/6 (the 

P(xi)’s) of showing.  

The expected value of the face showing is therefore 

Notice that, in this case, E(X) is 3.5, which is not a possible 
value of X.  

µ = E(X) = (1 x 1/6) + (2 x 1/6) + (3 x 1/6) + (4 x 1/6) + (5 x 1/6) 

+ (6 x 1/6) = 3.5  

Expected value of a RV X is the average value over a large 

number of experiments. It is called expectation, the mean, or 

the average of RV. 

Basic Concepts in Probability 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 43/22 43 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Probability Density Function 

Variance 2: is a measure of how much we expect the RV to 

vary from its mean. 

  dxxfxXEXVar X



 )()(][)( 222 

Standard deviation : is square root of the variance. Variance 

and standard deviation will play important roles in our 

characterization of the error of a single sensor as well as the error 

of a model generated by combining multiple sensor readings. 
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Basic Concepts in Probability 
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• Probability Density Function 

Example: Given the following pdf of a RV, calculate the 

expected value (the mean) and the variance. 



 


otherwise0

]3,1[2/1
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The mean is computed as follows: 
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The variance is computed as follows: 
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Basic Concepts in Probability 
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• Gaussian Distribution 

A RV is called Gaussian or normal if its pdf is given by 
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x
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We use the 

following notation 

to indicate that X is 

a Gaussian RV 

 2,~ NX

The Gaussian function with =0 and 

=1. The value 2 is often refereed to 

as the signal quality; 95.44% of the 

values are falling within ± 2. 

Basic Concepts in Probability 
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• Gaussian Distribution 

Only two parameters 

required to fully specify a 

particular Gaussian are its mean 

, and its standard deviation . 
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Gaussian distribution is also unimodal, with a single peak that 

reaches a maximum at  (necessary for any symmetric, unimodal 

distribution). 

Basic Concepts in Probability 
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• Gaussian Distribution 
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Basic Concepts in Probability 

This Gaussian distribution, also called the normal distribution, is 

used across engineering disciplines when a well-behaved 

error model is required for a random variable for which no 

error model of greater felicity has been discovered. 
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• Gaussian Distribution 

Q: Suppose that a RV X is modeled as a Gaussian. How does one 

identify the chance that the value of X is within one standard 

deviation of ?  





 dxxfxp X )()( 

Unfortunately, there is no closed-form solution for this 

integral, and so the common technique is to use a Gaussian 

cumulative probability table. 

Basic Concepts in Probability 

)(xf x

x

A: In practice, this requires integration 

of , the Gaussian function to compute 

the area under a portion of the curve: 
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• Gaussian Distribution 

Using Gaussian cumulative 

probability table, one can 

compute the area under the curve 

for various values ranges of X: 

;997.0)33(

;95.0)22(

;68.0)(
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Xp
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Basic Concepts in Probability 
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• Multivariate Normal Distribution 

Often, x will be a multi-dimensional vector. Normal 

distributions over vectors are called multivariate. 

Multivariate normal distributions are characterized by 

density functions of the following form: 

     








 
 xxxp

T 1
2

1

2

1
exp2det)(

Basic Concepts in Probability 

Here   is the mean vector and  a (positive semidefinite) 

symmetric matrix called  or covariance matrix. 
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• Joint Distribution 

The joint distribution of two random variables X and Y is given 

by: )  and  ()(),( yYxXpyxpyxp 

Basic Concepts in Probability 

If X and Y are independent (the particular value of one has no 

bearing on the particular value of the other), we have 

)()(),( ypxpyxp 

Example: A mobile robot’s laser rangefinder 

may be used to measure the position of a 

feature on the robot’s right and, later, another 

feature on the robot’s left. The position of 

each feature in the real world may be treated 

as random variables, X and Y. 
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• Conditional Probability 

Often, random variables carry information about other 

random variables (dependent random variables).  

Suppose we already know that Y ’s value is y, and we would like 

to know the probability that X’s value is x conditioned on that 

fact.  

Such a conditional probability will be denoted: 

)|()|( yYxXpyxp 

Basic Concepts in Probability 
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• Conditional Probability 

If p(y)>0, then the conditional probability is defined by: 

)(

),(
)|(

yp

yxp
yxp 

Basic Concepts in Probability 

If X and Y are independent, we have 

)(
)(

)()(
)|( xp

yp

ypxp
yxp 

In other words, if X and Y are independent, Y tells us nothing 

about the value of X. There is no advantage of knowing Y if 

our interest pertains to knowing X.  

Independence, and its generalization known as conditional 

independence. 

P(x , y) 

P(x) 
P(y) 

Venn Diagram 
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Basic Concepts in Probability 

• Conditional Probability 

Example-1: The probability that it is Thursday and that a 

student is absent is 0.03.  

Since there are 5 university days in a week, the probability that it 

is Thursday is 0.2. 

What is the probability that a student is absent given that today 

is Thursday? 

%1515.0
2.0

03.0
                                         

)Thursday(

)AbsentThursday(
)Thursday|Absent(






p

p
p
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Basic Concepts in Probability 

• Conditional Probability 

Example-2: An inspection robot is used to inspect some work 

pieces using two tests.  

25% of the pieces passed both tests and 42% of the pieces passed 

the first test.  

What percent of those which passed the first test also passed the 

second test?  

Solution: 

%6060.0
42.0

25.0
                                         

)FirstTest(

)SecondTest andFirstTest (
)FirstTest|SecondTest(




p

p
p
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Basic Concepts in Probability 

• Theorem of Total Probability 

case Continous -         )()|()(

case Discrete -           )()|()(









dyypyxpxp

ypyxpxp
y
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Basic Concepts in Probability 

• Theorem of Total Probability 

Example: An insurance company rents 40% of the cars for its 

customers from agency-I and 60% from agency-II. 

If 6% of the cars from agency-I and 5% of the cars from agency-II 

break down.  

What is the probability that a car rented by this company breaks 

down? 

Solution: 

◊ Let x represents the event “car breaks down” 

◊ Let y1, y2 represents the event “agency-I” and “agency-II” resp. 
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Basic Concepts in Probability 

• Theorem of Total Probability 

Example (cont’d): 


y

ypyxpp )()|()x(

◊ P( y1 )=0. 4 

◊ P( y2 )=0.6 

◊ P(x| y1 )=0.06 

◊ P(x| y2 )=0.05 

5.4%or  0.054        

)6.0)(05(.)4.0)(06.0(        

)()|()()|(        2211





 ypyxpypyxp
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• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 

Outline 
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Bayesian Rule 

• Conditional probability 

Assume that there are two dependent events: 

Event 
x 

Event z 

True False 

True 0.1 0.3 

False 0.4 0.2 
The probability of both events occurring can 
be expressed as: 

)()|(),( xpxzpzxp 

)()|(),( zpzxpzxp 

Or 

factorion normalizat

priorlikelihood

)(

)()|(
)|(




zp

xpxzp
zxp

Equating the RHS 
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Bayesian Rule 

where  x=state, 

z=observation or sensor measurement or data, 

p(z) is the evidence 

p(x) is the prior estimate or belief of the state (before taking the 
measurement)  

p(z|x) is the likelihood or measurement probability 

p(x|z) is the posterior estimate or belief of the state (after the 
measurement has been taken). 

)(

)()|(
)|(

zp

xpxzp
zxp 

Thomas Bayes 
English mathematician 

(1702 – 1761)  

Bayes rule is a rule that relates conditionals of the type 

p(x | z) to their “inverse,” p(z | x). 

http://upload.wikimedia.org/wikipedia/en/d/d4/Thomas_Bayes.gif
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• A priori 

◊ In philosophy, a priori is knowledge, justifications or 

arguments that is independent of experience.  

◊ In statistics, a priori knowledge refers to prior knowledge about 

a population, rather than that estimated by recent observation. 

◊ A priori is derived by logic, without observed facts . 

◊ A priori is deductive reasoning - involving inferences from 

general principles. 

All men are mortal. (major premise)  

Socrates is a man. (minor premise)  

Socrates is mortal. (conclusion)  

Deductive  Reasoning 

Bayesian Rule 

[Wikipedia] 
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• A Posteriori 

◊ In philosophy, a posteriori is knowledge, justifications or 

arguments that is dependent on experience or empirical 

evidence. 

◊ In Logic, a posteriori is the process of reasoning from effect to 

cause, based upon observation. 

◊ A posteriori is inductive reasoning; proceeding from particular 

facts to a general conclusion. 

3+5=8 and eight is an even number.  

Therefore, an odd number added to another odd 

number will result in an even number.  

Inductive  Reasoning 

Bayesian Rule 

[Wikipedia] 
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• It is common to think of Bayes rule in terms of updating our 

belief about a hypothesis x in the light of new evidence z. 

• Specifically, our posterior belief p(x|z) is calculated by 

multiplying our prior belief p(x) by the likelihood p(z|x) 

that z will occur if x is true. 

evidence

belief.prior likelihood
beliefposterior 

)(

)()|(
)|(




zp

xpxzp
zxp

Bayesian Rule 
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•  The power of Bayes’ rule is that in many situations where we 

want to compute p(x|z) it turns out that it is difficult to do so 

directly, yet we might have direct information about P(z|x).  

• Bayes’ rule enables us to compute p(x|z) in terms of p(z|x). 

evidence

belief.prior likelihood
beliefposterior 

)(

)()|(
)|(
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xpxzp
zxp

Bayesian Rule 
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Bayesian Rule 

)|()|( soundphonemepphonemesoundp 

)|()|( letterghandwritinpghandwritinletterp 

Bayes’ rule enables us to compute p(x|z) in terms of p(z|x). 

• Handwriting Recognition: 

• Speech Recognition: 

• Spam Filtering: 

)|()|( spamwordpwordspamp 
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• An important observation is that the denominator of Bayes rule, 

p(z), does not depend on x. For this reason, p(z)-1 is often 

written as a normalizer variable, and generically denoted. 

)()|(.)|( xpxzpzxp 

evidence

belief.prior likelihood
beliefposterior 

)(

)()|(
)|(




zp
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Bayesian Rule 
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• Existence of God 

◊ Here is Bayes’ rule applied to the probability that God exists, 

given some data we observe about the universe. 

◊ This data could be the fact that the physical world seems to 

obey an orderly set of rules, it could be a miraculous 

experience, or anything else that might affect our belief in God. 

◊ The probability that God exists, given some data about the 

universe  is equal to the probability of observing that data if 

God did exist, multiplied by our prior probability that God 

exists (our belief before observing the data), divided by the 

overall probability of observing the data. 

Bayesian Rule 
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• Existence of God 

◊ In mathematical form: 

(data)

exists) (God  exists) Godgiven  (data
data)given  exists (God

p

pp
p




◊ So what does this mean?  

◊ It means the higher somebody’s prior probability that God 

exists, the higher the probability they will assign to God 

existing even after observing the data, and vice versa, 

somebody with a very low prior probability of God existing will 

tend to give a lower probability to God existing, even after 

observing the same data. 

Bayesian Rule 
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• Existence of God 

◊ In fact, if you look carefully, somebody who has a zero prior 

probability of God existing (an Atheist) will continue to be an 

atheist, no matter how much evidence he or she is confronted 

with, since zero times anything is … zero! 

Bayesian Rule 

(data)

exists) (God  exists) Godgiven  (data
data)given  exists (God

p

pp
p
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• Example-1: Spam Filtering 

◊ Event A: The message is spam.  

◊ Test X: The message contains certain words (X)  

)X(

)A()A|X(
)X|A(

p

pp
p 

◊ Bayesian filtering allows us to predict the chance a message is 

really spam given the “test results” (the presence of certain 

words). Clearly, words like “Lucky you” have a higher chance 

of appearing in spam messages than in normal ones. 

◊ Spam filtering based on a blacklist is flawed — it’s too 

restrictive and false positives are too great. But Bayesian 

filtering gives us a middle ground — we use probabilities. 

Bayesian Rule 
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• Example-2: Cancer Test 

◊ Probability of having cancer p(C)=0.01 

◊ p(Pos|C)=0.9, i.e. 90% test is positive if you have C 

[Sensitivity]  

◊ p(Neg|¬C]=0.9, i.e. 90% test is negative if you don’t have C 

[Specificity] 

◊ Test is positive 

Given: 

What is the probability of having cancer? 

Required: 

Bayesian Rule 
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• Example-2: Cancer Test 

◊ Prior 

 p(C)=0.01, p(¬C)=0.99 

 p(Pos|C)=0.9, p(Pos|¬C)=0.1 

 p(Neg|¬C)=0.9, p(Neg|C)=0.1  

◊ Joint Probabilities 

 p(C,Pos)=p(C). p(Pos|C)=0.009 

 p(¬C,Pos)=p(¬C). p(Pos|¬C)=0.099 

 p(Pos)=p(C,Pos)+ p(¬C,Pos)=0.0108 

Don’t add to 1 

Bayesian Rule 
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• Example-2: Cancer Test 

◊ Posterior Probabilities 

9167.0
)P(

)C()C|P(
)Pos|C(

083.0
)P(

)C()C|P(
)Pos|C(








osp

posp
p

osp

posp
p

Add to 1 

Bayesian Rule 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 75/22 75 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Example-2: Cancer Test 

◊ Prior: p(C) 

◊ Sensitivity: p(Pos|C) 

◊ Specificity: p(Neg|¬C) Observed state 
(Test) 

Hidden 
state 

p(C) 

p(Pos|C), p(Neg|¬C) 

p(C) 

p(C,Pos) 

p(C|Pos) 

p(¬C,Pos) 

p(¬C|Pos) 

*p(Pos|C) *p(Pos|¬C) 

P(Pos) 

+ 

  

Joint probability 

Posterior  
probability 

Prior probability 

Sensitivity 

Evidence 

Bayesian Rule 
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• Example-3: Disease Diagnosis 

◊ Disease  {malaria, cold, flu}; Symptom = fever. 

◊ Must compute p(D | fever) to prescribe treatment 

◊ Why not assess this quantity directly? 

 p(mal | fever) is not natural to assess; 

 p(fever | mal) reflects the underlying “causal” mechanism 

 p(mal | fever) is not “stable”: a malaria epidemic changes 

this quantity (for example). 

◊ So we use Bayes rule: 

 p(mal | fever) = p(fever | mal) p(mal) / p(fever) 

Bayesian Rule 
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p(mal | fever) = p(fever | mal) p(mal) / p(fever) 

◊ What about p(mal)? 

 This is the prior probability of Malaria, i.e., before you 

exhibited a fever, and  

 with it we can account for other factors, e.g., a malaria 

epidemic, or recent travel to a malaria risk zone. 

• Example-3: Disease Diagnosis 

Bayesian Rule 
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p(mal | fever) = p(fever | mal) p(mal) / p(fever) 

◊ What about p(fever)? 

 We compute p of each disease given fever, i.e., solve the 

same problem for each possible clause of fever: 

p(fev) = p(mal  fev) + p(cold  fev) + p(flu  fev) 

P(fev) is called evidence and it’s a normalizing factor to 

guarantee that: 

p(mal|fever) + p(cold|fever) + p(flu|fever) = 1. 

• Example-3: Disease Diagnosis 

Bayesian Rule 
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• Example-4: Test Analysis 

◊ 1% of the population is ill: p(i) = 0.01 

◊ Given an ill person, the test is  positive in 90% of the cases: 

 p(t | i) = 0.9 

Given: 

◊ Given a person that is not ill, the test is positive in 20% of the 

cases: p(t | ¬i) = 0.2 

What is the probability of being ill given a positive test  p(i|t) ? 

Required: 

Bayesian Rule 
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• Example-4: Test Analysis 

Solution: 
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The probability of being ill given a positive test is only 4%! 

Bayesian Rule 
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• Example-5: Cancer Diagnosis 

◊ Suppose that we are interested in diagnosing cancer in patients 

who visit a chest clinic. 

◊ Let x represents the event “Person has cancer” 

◊ Let z represents the event “Person is a smoker” 

◊ We know the probability of the prior event p(x)=0.1 on the 

basis of past data (10% of patients entering the clinic turn 

out to have cancer). 

◊ We want to compute the probability of the posterior event 

p(x|z). It is difficult to find this out directly.  

Bayesian Rule 
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◊ We are likely to know p(z) by considering the percentage of 

patients who smoke – suppose p(z)=0.5.  

◊ We are also likely to know p(z|x) by checking from our record 

the proportion of smokers among those diagnosed. Suppose 

p(z|x)=0.8. 

◊ We can now use Bayes’ rule to compute: 

16.0
5.0

1.08.0

)(

)()|(
)|( 




zp

xpxzp
zxp

◊ Thus, in the light of evidence that the person is a smoker we 

revise our prior probability from 0.1 to a posterior probability 

of 0.16. This is a significance increase, but it is still unlikely that 

the person has cancer. 

• Example-5: Cancer Diagnosis 

Bayesian Rule 
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• Example-6: Ball Game 

◊ A box contains seven red and thirteen blue balls.  Two balls are 

selected at random and are discarded without their colors being 

seen.  If a third ball is drawn randomly and observed to be red, 

what is the probability that both of the discarded balls were 

blue? 

Required:  p(BB|R) 

Bayesian Rule 
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• Example-6: Ball Game 

Bayesian Rule 
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• Example-7: Two Bags Game 

◊ Suppose that we have two bags each                                        

containing black and white balls.  

◊ One bag contains three times as many white balls as blacks. The 

other bag contains three times as many black balls as white. 

◊ Suppose we choose one of these bags at random.  

◊ For this bag we select five balls at random, replacing each ball 

after it has been selected.  

◊ The result is that we find 4 white balls and one black.  

◊ What is the probability that we were using the bag with mainly 

white balls? 

Bayesian Rule 
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◊ Given: 

 A: the random variable “bag chosen” 

 then A={a1,a2} where a1 represents “bag with mostly white 

balls” and a2 represents “bag with mostly black balls” . 

◊ We know that p(a1)=p(a2)=1/2 since we choose the bag at 

random. 

◊ Let B be the event “4 white balls and one black ball 

chosen from 5 selections”. 

◊ Required: 

 Calculate p(a1|B) 

• Example-7: Two Bags Game 

Bayesian Rule 
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◊ From Bayes rule 
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◊ Now, for the bag with mostly white balls a1 : 

 The probability of a ball being white is ¾ and the probability of 

a ball being black is ¼.  

a1 a2 

◊ Now, for the bag with mostly black balls a2 : 

 The probability of a ball being white is ¼ and the probability of 

a ball being black is ¾.  

• Example-7: Two Bags Game 

Bayesian Rule 
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The probability of getting exactly k 

successes in n trials is 

◊ Using Binomial probability 
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• Example-7: Two Bags Game 

Bayesian Rule 
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◊ Similarly 

◊ hence 
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• Example-7: Two Bags Game 

For more see, the big essay on Bayes’ Theorem: http://yudkowsky.net/rational/bayes  

Bayesian Rule 

http://yudkowsky.net/rational/bayes
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• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 

Outline 
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Environment Interaction 

• The environment, or world, 

of an intelligent machine is 

a dynamical system that 

possesses internal state.  

• Intelligent machine can 

acquire information about 

its environment using its 

sensors. However, sensors 

are noisy, and there are 

usually many things that 

cannot be sensed 

directly.  

Environment, state

World model

Autonomous System

Percepts
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Strategies

Solutions
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Actions

belief

problem

schematic 

decision 

making

precise decision making

Goals
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• As a consequence, the 

robot maintains an 

internal belief with 

regards to the state of its 

environment.  

• The robot can also 

influence its environment 

through its actuators. 

However, the effect of 

doing so is often somewhat 

unpredictable. 

Environment, state
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Environment Interaction 
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• Sensor Measurements or observations or percepts 

◊ Measurement data: provides information about a 

momentary state of the environment. Examples of 

measurement data include camera images, range scans, 

and so on.  

◊ Typically, sensor measurements arrive with some delay. 

Hence they provide information about the state a few moments 

ago. 

◊ For most parts, we will simply ignore small timing effects 

(e.g., most ladar sensors scan environments sequentially at 

very high speeds, but we will simply assume the measurement 

corresponds to a specific point in time). 

Environment Interaction 
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• Sensor Measurements or observations or percepts 

◊ Measurement data: 

The measurement data at time t will be denoted  zt 

Assuming that the robot takes exactly one measurement at a 

time. The set of all measurements acquired from time t1 to 

time t2 for t1≤t2 is: 

211121
,...,,, 21: tttttt zzzzz 

Example data from an IMU unit for driving on an unpaved road 

Environment Interaction 

[5] 
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• Control Actions 

◊ Control actions change the state of the world. They do so 

by actively asserting forces on the robot’s environment. 

◊ Examples of control actions include robot motion and the 

manipulation of objects.  

◊ In practice, the robot continuously executes controls and 

measurements are made concurrently. 

◊ Control data will be denotes ut. 

◊ As before, we will denote sequences of control data by: 

211121
,...,,, 21: tttttt uuuuu 

Environment Interaction 
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◊ A belief reflects the robot’s internal knowledge about the 

state of the environment.  

Environment, state
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• Belief Distributions 

Environment Interaction 

◊ State cannot be measured directly. 

For example, a robot pose is not 

measurable directly (not even 

with GPS!).  

◊ Instead, the robot must infer its 

pose from data. We therefore 

distinguish the true state from 

its internal belief. 
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◊ Intelligent systems represents beliefs through conditional 

probability distributions. 

◊ A belief distribution assigns a probability (or density value) to 

each possible hypothesis with regards to the true state.  

◊ Belief distributions are posterior probabilities over state 

variables conditioned on the available data. 

• Belief Distributions 

Environment Interaction 
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),|()( :1:1 tttt uzxpxbel 

◊ The belief is taken 

after incorporating 

the measurement zt is 

),|()( :11:1 tttt uzxpxbel 

◊ The belief is taken 

before incorporating 

the measurement zt is 

Prediction 

Update 

• Belief Distributions 

Environment Interaction 
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• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 

Outline 
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Bayes Filter Algorithm 

• A statistically optimal recursive estimator of the state of a 

system given a set of observations. 

Estimated 
State 

Predicted 
state 

Correction or update 

)( txbel

Prediction  

)( txbel

• 2-step iterative approach: 

◊ Predict: Take current  

state and predict the next 

state using the              

system model. 

◊ Update: Adjust the 

predicted state using  

sensor observations. 

Observations 
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1. Algorithm                                                          : 

2.       for all xt do 

3.        

4.   

5.       endfor 

6. Return 

Bayes Filter Algorithm 

)()|()( tttt xbelxzpxbel 

  dxxbelxuxpxbel ttttt )(),|()( 11
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Prior belief (before taking the measurement) 

Posterior belief (after taking the measurement) 
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◊ Assume a robot is driving in a straight line along the d axis, 

starting at the true position d=0.  

◊ The robot executes driving commands with distance u, 

where u is an integer, and 

◊ It receives sensor data from its on-board global (absolute) 

positioning system z (e.g. a GPS receiver), where z is also an 

integer. 

• Case Study-1 

Bayes Filter Algorithm 
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◊ The robot’s driving accuracy from an arbitrary starting 

position has to be established by extensive experimental 

measurements and can then be expressed by: 

2.0)|1(
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dUdxp
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dUdxp Note that in this example, the 

robot’s true position can only 

deviate by plus or minus one 

unit (e.g. cm); all position data are 

discrete. 

• Case Study-1 

Bayes Filter Algorithm 
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◊ the accuracy of the robot’s position sensor has to be 

established by measurements, before it can be expressed as 

following.  

Note that in this example, there 

will again only be a possible 

deviation from the true position 

by plus or minus one unit. 

• Case Study-1 

Bayes Filter Algorithm 
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◊ Initial Condition 

 Assuming the robot has executed a driving command with 

u=2 and after completion of this command, its local sensor 

reports its position as z=2. 

1)0( 0 Xbel starting at the true position d=0. 

◊ First Iteration 

• Case Study-1 

Bayes Filter Algorithm 
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• Case Study-1: First Iteration (cont’d) 

0 1 2 3 
Current belief 

Predicted state 

Possible state 

(d-1) with p=0.2 (d) with p=0.6 (d+1) with p=0.2 

u=2 
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 XbelXZpXbel Update 

Bayes Filter Algorithm 

X1=1 X1=2 X1=3 

• Case Study-1: First Iteration (cont’d) 
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• Case Study-1: First Iteration (cont’d) 

Bayes Filter Algorithm 
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So the robot is most likely to be in position 2, but it 

remembers all probabilities at this stage. 
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• Case Study-1: First Iteration (cont’d) 

Bayes Filter Algorithm 
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◊ Let us assume the robot executes a second driving command, 

this time with u=1, but after execution its sensor still reports 

z=2.  

• Case Study-1: Second Iteration 

Bayes Filter Algorithm 

◊ The robot will now recalculate its position belief according to 

the conditional probabilities, with x denoting the robot’s true 

position after driving and xo before driving: 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 111/22 111 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

Predict 

Bayes Filter Algorithm 
• Case Study-1: Second Iteration (cont’d) 
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Predict 

Bayes Filter Algorithm 
• Case Study-1: Second Iteration (cont’d) 
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Predict 

Bayes Filter Algorithm 
• Case Study-1: Second Iteration (cont’d) 
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• Case Study-1: Second Iteration (cont’d) 

Update 
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◊ Similarly: 
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• Case Study-1: Second Iteration (cont’d) 

Bayes Filter Algorithm 
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The robot will be at X2=2 with higher probability after 

the new control action u1=1 in accordance with the data 

reported by the GPS 

• Case Study-1: Second Iteration (cont’d) 

Bayes Filter Algorithm 
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◊ A robot is driving in front of a 

door. The robot is estimating the 

state of a door (open or 

closed) using its camera.  

◊ To make this problem simple, let us assume that the door can 

be in one of two possible states, open or closed, and that 

only the robot can change the state of the door.  

◊ Let us furthermore assume that the robot does not know 

the state of the door initially. Instead, it assigns equal 

prior probability to the two possible door states: 

     5.0)closed(         ,5.0)open(  oo XbelXbel

• Case Study-2 

Bayes Filter Algorithm 

[4] 
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◊ Assume the robot’s sensors are noisy.  

◊ The noise is characterized by                 

the following conditional                    

probabilities: 

4.0)is_open|edsense_clos(

6.0)is_open|sense_open(





tt

tt

XZp

XZp

8.0)is_closed|edsense_clos(

2.0)is_closed|sense_open(





tt

tt

XZp

XZp

These probabilities suggest that the robot’s sensors are 

relatively reliable in detecting a closed door. 

• Case Study-2 

Bayes Filter Algorithm 

[4] 
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◊ Finally, let us assume the robot 

uses its manipulator to push 

the door open.  

◊ If the door is already open, it will 

remain open. If it is closed, the 

robot has a 0.8 chance that it will 

be open afterwards: 

0)is_open,push|is_closed(

1)is_open,push|is_open(

1

1
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XUXp
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• Case Study-2 

Bayes Filter Algorithm 

[4] 
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◊ It can also choose not to use 

its manipulator, in which case 

the state of the world does not 

change.  

◊ This is stated by the following 

conditional probabilities: 

0)is_open,do_nothing|is_closed(

1)is_open,do_nothing|is_open(
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XUXp
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0)is_closed,do_nothing|is_open(
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◊ Suppose at time t, the robot takes no control action but it 

senses an open door.  

◊ The resulting posterior belief is calculated by the Bayes 

filter using the prior belief bel(X0), the control u1 = 

do_nothing, and the measurement sense_open as input. 

 000111 )(),|()( dxxbelxuxpxbel

◊ Since the state space is finite, the integral turns into a finite 

sum: 

)is_closed()is_closed,do_nothing|(               

)is_open()is_open,do_nothing|(            

)(),|()(

0011

0011

00111







XbelXUxp

XbelXUxp
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5.05.005.01                               

)is_closed()is_closed,do_nothing|is_open(                                 

)is_open()is_open,do_nothing|is_open()is_open(
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00111







XbelXUXp
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◊  For the hypothesis X1 = is_open, we obtain 

◊  Likewise, for the hypothesis X1 = is_closed, we obtain 

5.05.015.00                               

)is_closed()is_closed,do_nothing|is_closed(                                 

)is_open()is_open,do_nothing|is_closed()is_closed(

0011

00111







XbelXUXp

XbelXUXpXbel

The fact that the belief               equals our prior belief             

should not surprise, as the action do_nothing does not affect 

the state of the world; neither does the world change over time 

by itself in this example. 

)( 1xbel )( oxbel
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◊ Incorporating the measurement, however, changes the belief. 

◊ Line 4 of the Bayes filter algorithm implies 

)()|sense_open()( 1111 xbelxZpxbel 

◊ For the two possible cases X1=is_open and X1=is_closed, 

we get 





3.05.06.0                               

)is_open()is_open|sense_open()is_open( 1111



 XbelXZpXbel





1.05.02.0                               

)is_closed()is_closed|sense_open()is_closed( 1111



 XbelXZpXbel

The normalizer  is now easily calculated: 5.2)1.03.0( 1  
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◊ Hence, we have 

25.0)is_closed(

75.0)is_open(

1

1





Xbel

Xbel

◊ In the second iteration: 

For u2 = push and z2 = sense_open we get 

05.025.02.075.00)is_closed(

95.025.08.075.01)is_open(
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2
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and 
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05.02.0)is_closed(

95.06.0)is_open(

22

2

2







XbelXbel

Xbel

Xbel







• Case Study-2 

Bayes Filter Algorithm 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 125/22 125 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

• Uncertainty  

• State Estimation 

• Basic Concepts in Probability 

• Bayesian Rule 

• Environment Interaction 

• Bayes Filter Algorithm 

• Summary 

Outline 



MUSES_SECRET: ORF-RE Project   -   © PAMI Research Group – University of Waterloo 126/22 126 L5, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis 

 

Summary 

• Probabilistic descriptions are indispensable when 

representing and dealing quantitatively with uncertainty. 

• In most of autonomous systems, we often assume the 

independence of random variables even when this assumption 

is not strictly true.  

• The simplification that results makes a number of the existing 

mapping and navigation algorithms tenable. 

• A further simplification, revolves around one specific probability 

density function used more often than any other when modeling 

error: the Gaussian distribution. 
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Summary 

• The interaction of a robot and its environment is modeled as a 

coupled dynamical system, in which the robot can manipulate its 

environment by choosing controls, and in which it can perceive 

its environment through sensor measurements. 

• Bayesian probability is a formalism that allows us to reason 

about beliefs under conditions of uncertainty. 

• The belief of a robot is the posterior distribution over the state of 

the environment (including the robot state), given all past sensor 

measurements and all past controls. The Bayes filter is the 

principal algorithm for calculating the belief in robotics. The 

Bayes filter is recursive; the belief at time t is calculated from the 

belief at time t-1. 
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• The Bayes filter makes a Markov assumption that specifies 

that the state is a complete summary of the past. This 

assumption implies the belief is sufficient to represent the past 

history of the robot. In robotics, the Markov assumption is 

usually only an approximation. 

Summary 
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